Custom cover image
Custom cover image

Probability and real trees : Ecole d'Eté de Probabilités de Saint-Flour XXXV-2005 / Steven N. Evans

Contributor(s): Resource type: Ressourcentyp: Buch (Online)Book (Online)Language: English Series: Lecture notes in mathematics ; 1920Publisher: Berlin ; Heidelberg : Springer, 2008Description: Online-Ressource (digital)ISBN:
  • 9783540747987
Subject(s): Additional physical formats: 9783540747970 | Buchausg. u.d.T.: Probability and real trees. Berlin : Springer, 2008. XI, 193 S.DDC classification:
  • 511/.52
  • 519.2
  • 510
MSC: MSC: *60B10 | 60B11 | 60G17 | 60J65 | 60J80 | 28C10 | 28C20RVK: RVK: SK 820 | SI 850LOC classification:
  • QA273.A1-274.9 QA274-274.9
  • QA166.2
DOI: DOI: 10.1007/978-3-540-74798-7Online resources: Summary: Around the Continuum Random Tree -- R-Trees and 0-Hyperbolic Spaces -- Hausdorff and Gromov–Hausdorff Distance -- Root Growth with Re-Grafting -- The Wild Chain and other Bipartite Chains -- Diffusions on a R-Tree without Leaves: Snakes and Spiders -- R–Trees from Coalescing Particle Systems -- Subtree Prune and Re-Graft.Summary: Random trees and tree-valued stochastic processes are of particular importance in combinatorics, computer science, phylogenetics, and mathematical population genetics. Using the framework of abstract "tree-like" metric spaces (so-called real trees) and ideas from metric geometry such as the Gromov-Hausdorff distance, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behaviour of such objects when the number of vertices goes to infinity. These notes survey the relevant mathematical background and present some selected applications of the theory.PPN: PPN: 1645979768Package identifier: Produktsigel: ZDB-2-LNM | ZDB-2-SEB | ZDB-2-SMA | ZDB-2-SXMS
No physical items for this record

Reproduktion. (Springer eBook Collection. Mathematics and Statistics)