Custom cover image
Custom cover image

Partial Inner Product Spaces : Theory and Applications / by Jean-Pierre Antoine, Camillo Trapani

By: Contributor(s): Resource type: Ressourcentyp: Buch (Online)Book (Online)Language: English Series: SpringerLink Bücher | Lecture notes in mathematics ; 1986Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009Description: Online-Ressource (XX, 358 p. 11 illus, digital)ISBN:
  • 9783642051364
Subject(s): Additional physical formats: 9783642051357 | Buchausg. u.d.T.: Partial Inner Product Spaces. 1. Aufl. Berlin : Springer, 2009. XX, 352 S.DDC classification:
  • 515.7
  • 515.73
MSC: MSC: *46-02 | 46C50 | 47N50 | 94A08 | 94A12RVK: RVK: SI 850LOC classification:
  • QA319-329.9
  • QA322.4
DOI: DOI: 10.1007/978-3-642-05136-4Online resources: Summary: General Theory: Algebraic Point of View -- General Theory: Topological Aspects -- Operators on PIP-Spaces and Indexed PIP-Spaces -- Examples of Indexed PIP-Spaces -- Refinements of PIP-Spaces -- Partial #x002A;-Algebras of Operators in a PIP-Space -- Applications in Mathematical Physics -- PIP-Spaces and Signal ProcessingSummary: Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplinesPPN: PPN: 1649978375Package identifier: Produktsigel: ZDB-2-SEB | ZDB-2-SXMS | ZDB-2-LNM | ZDB-2-SMA
No physical items for this record