Custom cover image
Custom cover image

Intersections of Hirzebruch–Zagier Divisors and CM Cycles / by Benjamin Howard, Tonghai Yang

By: Contributor(s): Resource type: Ressourcentyp: Buch (Online)Book (Online)Language: English Series: SpringerLink Bücher | Lecture notes in mathematics ; 2041Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012Description: Online-Ressource (VIII, 140p, digital)ISBN:
  • 9783642239793
Subject(s): Additional physical formats: 9783642239786 | Buchausg. u.d.T.: Intersections of Hirzebruch-Zagier divisors and CM cycles. Berlin : Springer, 2012. VIII, 140 S.DDC classification:
  • 516.35 23
  • 512.7
MSC: MSC: *11G18 | 11-02 | 11G15 | 14G40RVK: RVK: SI 850LOC classification:
  • QA241-247.5
DOI: DOI: 10.1007/978-3-642-23979-3Online resources: Summary: 1. Introduction -- 2. Linear Algebra -- 3. Moduli Spaces of Abelian Surfaces -- 4. Eisenstein Series -- 5. The Main Results -- 6. Local CalculationsSummary: This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein seriesPPN: PPN: 1651281289Package identifier: Produktsigel: ZDB-2-SEB | ZDB-2-SXMS | ZDB-2-LNM | ZDB-2-SMA
No physical items for this record