Custom cover image
Custom cover image

Mixed Twistor D-modules / by Takuro Mochizuki

By: Resource type: Ressourcentyp: Buch (Online)Book (Online)Language: English Series: SpringerLink Bücher | Lecture notes in mathematics ; 2125Publisher: Cham [u.a.] : Springer, 2015Edition: 1st ed. 2015Description: Online-Ressource (XX, 487 p, online resource)ISBN:
  • 9783319100883
Subject(s): Additional physical formats: 9783319100876 | Erscheint auch als: Mixed twistor D-modules. Druck-Ausgabe Cham : Springer, 2015. XX, 487 S.DDC classification:
  • 515.94
MSC: MSC: *32-02 | 32C38 | 14F10RVK: RVK: SI 850LOC classification:
  • QA331.7
DOI: DOI: 10.1007/978-3-319-10088-3Online resources:
Contents:
IntroductionPreliminary -- Canonical prolongations -- Gluing and specialization of r-triples -- Gluing of good-KMS r-triples -- Preliminary for relative monodromy filtrations -- Mixed twistor D-modules -- Infinitesimal mixed twistor modules -- Admissible mixed twistor structure and variants -- Good mixed twistor D-modules -- Some basic property -- Dual and real structure of mixed twistor D-modules -- Derived category of algebraic mixed twistor D-modules -- Good systems of ramified irregular values.
Summary: Introduction -- Preliminary -- Canonical prolongations -- Gluing and specialization of r-triples -- Gluing of good-KMS r-triples -- Preliminary for relative monodromy filtrations -- Mixed twistor D-modules -- Infinitesimal mixed twistor modules -- Admissible mixed twistor structure and variants -- Good mixed twistor D-modules -- Some basic property -- Dual and real structure of mixed twistor D-modules -- Derived category of algebraic mixed twistor D-modules -- Good systems of ramified irregular valuesSummary: We introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem, and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular.PPN: PPN: 1657923584Package identifier: Produktsigel: ZDB-2-SEB | ZDB-2-SXMS | ZDB-2-LNM | ZDB-2-SMA
No physical items for this record

Powered by Koha