Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC ISBD

Latent Variable Analysis and Signal Separation : 12th International Conference, LVA/ICA 2015, Liberec, Czech Republic, August 25-28, 2015, Proceedings / edited by Emmanuel Vincent, Arie Yeredor, Zbyněk Koldovský, Petr Tichavský

Mitwirkende(r): Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: SpringerLink Bücher | Lecture notes in computer science ; 9237Verlag: Cham [u.a.] : Springer, 2015Auflage: 1st ed. 2015Beschreibung: Online-Ressource (XVI, 532 p. 128 illus, online resource)ISBN:
  • 9783319224824
Schlagwörter: Genre/Form: Andere physische Formen: 9783319224817 | Druckausg.: 978-3-319-22481-7 | Erscheint auch als: Latent variable analysis and signal separation. Druck-Ausgabe. Cham [u.a.] : Springer, 2015. XVI, 532 S.DDC-Klassifikation:
  • 006.4
LOC-Klassifikation:
  • Q337.5 TK7882.P3
  • Q337.5
  • TK7882.P3
DOI: DOI: 10.1007/978-3-319-22482-4Online-Ressourcen:
Inhalte:
Tensor-based methods for blind signal separationDeep neural networks for supervised speech separation/enhancment -- Joined analysis of multiple datasets, data fusion, and related topics -- Advances in nonlinear blind source separation -- Sparse and low rank modeling for acoustic signal processing.
Zusammenfassung: Tensor-based methods for blind signal separation -- Deep neural networks for supervised speech separation/enhancment -- Joined analysis of multiple datasets, data fusion, and related topics -- Advances in nonlinear blind source separation -- Sparse and low rank modeling for acoustic signal processing.Zusammenfassung: This book constitutes the proceedings of the 12th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICS 2015, held in Liberec, Czech Republic, in August 2015. The 61 revised full papers presented – 29 accepted as oral presentations and 32 accepted as poster presentations – were carefully reviewed and selected from numerous submissions. Five special topics are addressed: tensor-based methods for blind signal separation; deep neural networks for supervised speech separation/enhancement; joined analysis of multiple datasets, data fusion, and related topics; advances in nonlinear blind source separation; sparse and low rank modeling for acoustic signal processing.PPN: PPN: 1657928071Package identifier: Produktsigel: ZDB-2-SXCS | ZDB-2-LNC | ZDB-2-SCS | ZDB-2-SEB
Dieser Titel hat keine Exemplare

Powered by Koha