Custom cover image
Custom cover image

Renormalization Group Analysis of Equilibrium and Non-equilibrium Charged Systems / by Evgeny Barkhudarov

By: Resource type: Ressourcentyp: Buch (Online)Book (Online)Language: English Series: Springer Theses, Recognizing Outstanding Ph.D. Research | SpringerLink BücherPublisher: Cham ; Heidelberg ; New York ; Dordrecht ; London : Springer, 2014Description: Online-Ressource (XV, 163 p. 28 illus., 10 illus. in color, online resource)ISBN:
  • 9783319061542
Subject(s): Genre/Form: Additional physical formats: 9783319061535 | Erscheint auch als: 978-331-90615-3-5 Druck-Ausgabe | Erscheint auch als: Renormalization group analysis of equilibrium and non-equilibrium charged systems. Druck-Ausgabe Cham [u.a.] : Springer, 2014. XV, 163 S.DDC classification:
  • 530.15
MSC: MSC: *76-02 | 76W05 | 82C28 | 82D10 | 78A35LOC classification:
  • QC5.53
DOI: DOI: 10.1007/978-3-319-06154-2Online resources:
Contents:
Part I Renormalization GroupHistorical Overview -- Wilson-Kadanoff Renormalization Group -- Part II Equilibrium Statistical Mechanics - Coulomb Gas -- D-dimensional Coulomb Gas -- Renormalization Group Analysis -- Part III Non-equilibrium Statistical Mechanics - Randomly Stirred Magnetohydrodynamics -- Turbulent Flows -- Recursion Relations and Fixed Point Analysis.
Summary: This thesis has two parts, each based on an application of the renormalization-group (RG). The first part is an analysis of the d-dimensional Coulomb gas. The goal was to determine if the Wilson RG could provide input into particle-in-cell simulations in plasma physics, which are the main family of simulation methods used in this field. The role of the RG was to identify the effect of coarse-graining on the coupling constants as a function of the cut-offs. The RG calculation reproduced established results, but in a more concise form, and showed the effect of the cut-offs on the Debye screening length. The main part of the thesis is the application of the dynamic RG to turbulence in magnetohydrodynamics. After transformation to Elsasser variables, which is a symmetrisation of the original equations, the solution is presented as a functional integral, which includes stirring forces, their conjugates and functional Jacobian. The coarse-graining of the functional integral is represented as a diagrammatic expansion, followed by rescaling, and casting the results into differential equations for the analysis of RG trajectories. Detailed comparisons are made with the Navier-Stokes limit and with previous calculations for MHDPPN: PPN: 1657962431Package identifier: Produktsigel: ZDB-2-PHA
No physical items for this record

Powered by Koha