Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC-Ansicht ISBD

Hypergeometric Summation : An Algorithmic Approach to Summation and Special Function Identities / by Wolfram Koepf

Von: Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: Universitext | SpringerLink BücherVerlag: London [u.a.] : Springer, 2014Auflage: 2nd ed. 2014Beschreibung: Online-Ressource (XVII, 279 p. 5 illus., 3 illus. in color, online resource)ISBN:
  • 9781447164647
Schlagwörter: Andere physische Formen: 9781447164630 | Erscheint auch als: Hypergeometric summation. Druck-Ausgabe 2. ed. London : Springer, 2014. XVII, 279 S.DDC-Klassifikation:
  • 518.1
MSC: MSC: *33-02 | 33C05 | 33C20 | 33D70 | 33D90 | 40C99LOC-Klassifikation:
  • QA76.9.A43
DOI: DOI: 10.1007/978-1-4471-6464-7Online-Ressourcen:
Inhalte:
IntroductionThe Gamma Function -- Hypergeometric Identities -- Hypergeometric Database -- Holonomic Recurrence Equations -- Gosper’s Algorithm -- The Wilf-Zeilberger Method -- Zeilberger’s Algorithm -- Extensions of the Algorithms -- Petkovˇsek’s and Van Hoeij’s Algorithm -- Differential Equations for Sums -- Hyperexponential Antiderivatives -- Holonomic Equations for Integrals -- Rodrigues Formulas and Generating Functions.
Zusammenfassung: Introduction -- The Gamma Function -- Hypergeometric Identities -- Hypergeometric Database -- Holonomic Recurrence Equations -- Gosper’s Algorithm -- The Wilf-Zeilberger Method -- Zeilberger’s Algorithm -- Extensions of the Algorithms -- Petkovˇsek’s and Van Hoeij’s Algorithm -- Differential Equations for Sums -- Hyperexponential Antiderivatives -- Holonomic Equations for Integrals -- Rodrigues Formulas and Generating FunctionsZusammenfassung: Modern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple™. The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovšek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book. The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given. The materials covered are suitable for an introductory course on algorithmic summation and will appeal to students and researchers alikePPN: PPN: 1658623533Package identifier: Produktsigel: ZDB-2-SEB | ZDB-2-SXMS | ZDB-2-SMA
Dieser Titel hat keine Exemplare