Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC-Ansicht ISBD

Predicting Real World Behaviors from Virtual World Data / edited by Muhammad Aurangzeb Ahmad, Cuihua Shen, Jaideep Srivastava, Noshir Contractor

Von: Mitwirkende(r): Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: Springer Proceedings in Complexity | SpringerLink BücherVerlag: Cham ; s.l. : Springer International Publishing, 2014Beschreibung: Online-Ressource (XIV, 118 p. 40 illus., 27 illus. in color, online resource)ISBN:
  • 9783319071428
Schlagwörter: Andere physische Formen: 9783319071411 | Erscheint auch als: Predicting real world behaviors from virtual world data. Druck-Ausgabe. Cham : Springer, 2014. XIV, 118 S.DDC-Klassifikation:
  • 004
  • 303.4833 23
RVK: RVK: ST 530LOC-Klassifikation:
  • QA76.76.A65
DOI: DOI: 10.1007/978-3-319-07142-8Online-Ressourcen:
Inhalte:
PrefaceOn The Problem of Predicting Real World Characteristics from Virtual Worlds -- The Use of Social Science Methods to Predict Player Characteristics from Avatar Observations -- Analyzing Effects of Public Communication onto Player Behavior in Massively Multiplayer Online Games -- Identifying User Demographic Traits through Virtual-World Language Use -- Predicting MMO Player Gender from In-Game Attributes using Machine Learning Models -- Predicting Links in Human Contact Networks using Online Social Proximity -- Identifying a Typology of Players Based on Longitudinal Game Data.
Zusammenfassung: There is a growing body of literature that focuses on the similarities and differences between how people behave in the offline world vs. how they behave in these virtual environments. Data mining has aided in discovering interesting insights with respect to how people behave in these virtual environments. The book addresses prediction, mining and analysis of offline characteristics and behaviors from online data and vice versa. Each chapter will focus on a different aspect of virtual worlds to real world prediction e.g., demographics, personality, location, etc.Zusammenfassung: This book addresses prediction, mining and analysis of offline characteristics and behaviors from online data and vice versa. Each chapter will focus on a different aspect of virtual worlds to real world prediction e.g., demographics, personality, location, etc. There is a growing body of literature that focuses on the similarities and differences between how people behave in the offline world vs. how they behave in these virtual environments. Data mining has aided in discovering interesting insights with respect to how people behave in these virtual environmentsPPN: PPN: 1658906152Package identifier: Produktsigel: ZDB-2-SCS
Dieser Titel hat keine Exemplare