Custom cover image
Custom cover image

Hyperspectral Image Analysis : Advances in Machine Learning and Signal Processing / edited by Saurabh Prasad, Jocelyn Chanussot

Contributor(s): Resource type: Ressourcentyp: Buch (Online)Book (Online)Language: English Series: Advances in Computer Vision and Pattern Recognition | Springer eBook CollectionPublisher: Cham : Springer International Publishing, 2020Publisher: Cham : Imprint: Springer, 2020Edition: 1st ed. 2020Description: 1 Online-Ressource(VI, 466 p. 170 illus., 144 illus. in color.)ISBN:
  • 9783030386177
Subject(s): Additional physical formats: 9783030386160 | 9783030386184 | 9783030386191 | Erscheint auch als: 9783030386160 Druck-Ausgabe | Erscheint auch als: 9783030386184 Druck-Ausgabe | Erscheint auch als: 9783030386191 Druck-AusgabeDDC classification:
  • 006.6 23
  • 006.37 23
DOI: DOI: 10.1007/978-3-030-38617-7Online resources: Summary: 1. Introduction -- 2. Machine Learning Methods for Spatial and Temporal Parameter Estimation -- 3. Deep Learning for Hyperspectral Image Analysis, Part I: Theory and Algorithms -- 4. Deep Learning for Hyperspectral Image Analysis, Part II: Applications to Remote Sensing and Biomedicine -- 5. Advances in Deep Learning for Hyperspectral Image Analysis - Addressing Challenges Arising in Practical Imaging Scenarios -- 6. Addressing the Inevitable Imprecision: Multiple Instance Learning for Hyperspectral Image Analysis.Summary: This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful. Dr. Saurabh Prasad is an Associate Professor at the Department of Electrical and Computer Engineering at the University of Houston, TX, USA. Dr. Jocelyn Chanussot is a Professor in the Signal and Images Department at Grenoble Institute of Technology, France.PPN: PPN: 1697214673Package identifier: Produktsigel: ZDB-2-SCS | ZDB-2-SEB | ZDB-2-SXCS
No physical items for this record

Powered by Koha