Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC ISBD

Multi-composed programming with applications to facility location / Oleg Wilfer

Von: Mitwirkende(r): Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics | Research | Springer eBook CollectionVerlag: Wiesbaden ; [Heidelberg] : Springer Spektrum, [2020]Copyright-Datum: © 2020Beschreibung: 1 Online-Ressource(XIX, 192 Seiten) : IllustrationenISBN:
  • 9783658305802
Schlagwörter: Genre/Form: Andere physische Formen: 9783658305796 | 9783658305819 | Erscheint auch als: 9783658305796 Druck-Ausgabe | Erscheint auch als: 9783658305819 Druck-Ausgabe | Erscheint auch als: Multi-composed programming with applications to facility location. Druck-Ausgabe Wiesbaden : Springer Spektrum, 2020. XV, 192 SeitenDOI: DOI: 10.1007/978-3-658-30580-2Online-Ressourcen: Hochschulschriftenvermerk: Dissertation - Chemnitz University of Technology, 2017 Zusammenfassung: Lagrange Duality for Multi-Composed Optimization Problems -- Duality Results for Minmax Location Problems -- Solving Minmax Location Problems via Epigraphical Projection -- Numerical Experiments.Zusammenfassung: Oleg Wilfer presents a new conjugate duality concept for geometric and cone constrained optimization problems whose objective functions are a composition of finitely many functions. As an application, the author derives results for single minmax location problems formulated by means of extended perturbed minimal time functions as well as for multi-facility minmax location problems defined by gauges. In addition, he provides formulae of projections onto the epigraphs of gauges to solve these kinds of location problems numerically by using parallel splitting algorithms. Numerical comparisons of recent methods show the excellent performance of the proposed solving technique. Contents Lagrange Duality for Multi-Composed Optimization Problems Duality Results for Minmax Location Problems Solving Minmax Location Problems via Epigraphical Projection Numerical Experiments Target Groups Scientists and students in the field of mathematics, applied mathematics and mathematical economics Practitioners in these fields and mathematical optimization as well as operations research About the Author Dr. Oleg Wilfer received his PhD at the Faculty of Mathematics of Chemnitz University of Technology, Germany. He is currently working as a development engineer in the automotive industry.PPN: PPN: 1699182078Package identifier: Produktsigel: ZDB-2-SEB | ZDB-2-SMA | ZDB-2-SXMS
Dieser Titel hat keine Exemplare

Powered by Koha