Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC ISBD

Evolutionary Data Clustering: Algorithms and Applications / edited by Ibrahim Aljarah, Hossam Faris, Seyedali Mirjalili

Mitwirkende(r): Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: Algorithms for Intelligent SystemsVerlag: Singapore : Springer Singapore, 2021Verlag: Singapore : Imprint: Springer, 2021Auflage: 1st ed. 2021Beschreibung: 1 Online-Ressource(XII, 248 p. 53 illus., 51 illus. in color.)ISBN:
  • 9789813341913
Schlagwörter: Andere physische Formen: 9789813341906 | 9789813341920 | 9789813341937 | Erscheint auch als: 9789813341906 Druck-Ausgabe | Erscheint auch als: 9789813341920 Druck-Ausgabe | Erscheint auch als: 9789813341937 Druck-AusgabeDDC-Klassifikation:
  • 006.3 23
DOI: DOI: 10.1007/978-981-33-4191-3Online-Ressourcen: Zusammenfassung: Introduction to Evolutionary Data Clustering and its Applications -- A Comprehensive Review of Evaluation and Fitness Measures for Evolutionary Data Clustering -- A Grey Wolf based Clustering Algorithm for Medical Diagnosis Problems -- EEG-based Person Identification Using Multi-Verse Optimizer As Unsupervised Clustering Techniques -- Review of Evolutionary Data Clustering Algorithms for Image Segmentation -- Classification Approach based on Evolutionary Clustering and its Application for Ransomware Detection.Zusammenfassung: This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.PPN: PPN: 1750019396Package identifier: Produktsigel: ZDB-2-INR | ZDB-2-SEB | ZDB-2-SXIT
Dieser Titel hat keine Exemplare

Powered by Koha