Custom cover image
Custom cover image

The mother body phase transition in the normal matrix model / Pavel M. Bleher, Guilherme L. F. Silva

By: Contributor(s): Resource type: Ressourcentyp: Buch (Online)Book (Online)Language: English Series: Memoirs of the American Mathematical Society ; number 1289Publisher: Providence, RI : American Mathematical Society, [2020]Description: 1 Online-Ressource (v, 144 pages)ISBN:
  • 1470461463
  • 9781470461461
Subject(s): Additional physical formats: 9781470441845 DDC classification:
  • 512.9/434
LOC classification:
  • QA188
Online resources: Summary: 2.12. Setup for the remainder of the paper -- Chapter 3. Limiting boundary of eigenvalues. Proofs of Propositions 2.1 and 2.7 and Theorems 2.2, 2.5 and 2.8 -- 3.1. Proof of Proposition 2.1 -- 3.2. Proofs of Theorems 2.2, 2.5 and 2.8 and Proposition 2.7 -- Chapter 4. Geometry of the spectral curve. Proof of Theorem 2.6 -- 4.1. The spectral curve for ₁=0 -- 4.2. The spectral curve for ₁>0. Proof of Theorem 4.1 -- 4.3. Sheet structure for ℛ -- Chapter 5. Meromorphic quadratic differential on ℛ -- 5.1. Technical computations for the three-cut caseSummary: 5.2. Technical computations for the one-cut case -- 5.3. Quadratic differential on the spectral curve: general principles -- 5.4. Critical graph in the three-cut case -- 5.5. Critical graph in the one-cut case -- Chapter 6. Proofs of Theorems 2.3, 2.4, 2.9 and 2.10 -- Chapter 7. Riemann-Hilbert analysis in the three-cut case -- 7.1. Multiple orthogonality in terms of Airy functions -- 7.2. The Riemann-Hilbert problem -- 7.3. First transformation: \mapsto -- 7.4. Second transformation: \mapsto -- 7.5. Opening of lenses: \mapsto -- 7.6. The global parametrix -- 7.7. The local parametricesSummary: 7.8. Final transformation: \mapsto -- Chapter 8. Riemann-Hilbert analysis in the one-cut case -- Chapter 9. Construction of the global parametrix -- 9.1. The inverse of the rational parametrization -- 9.2. Construction of the global parametrix in the three-cut case -- 9.3. Construction of the global parametrix in the one-cut case -- 9.4. Explicit construction of the first row -- Chapter 10. Proofs of Theorems 2.14 and 2.15 -- Appendix A. Analysis of the width parameters -- A.1. Width parameters in the three-cut case -- A.2. Width parameters in the one-cut case -- AcknowledgementsSummary: Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Statement of main results -- 2.1. Phase diagram of the cubic model -- 2.2. The limiting boundary of eigenvalues as a polynomial curve -- 2.3. Spectral curve -- 2.4. Phase transition of the spectral curve -- 2.5. The parameters ( , ₀) as a change of variables -- 2.6. The mother body problem -- 2.7. Associated multiple orthogonality -- 2.8. Behavior at the boundary of the phase diagram -- 2.9. The S-property -- 2.10. Statement of Results -- ₁<0 -- 2.11. Phase transition along the mother body critical curveSummary: The normal matrix model with algebraic potential has gained a lot of attention recently, partially in virtue of its connection to several other topics as quadrature domains, inverse potential problems and the Laplacian growth. In this present paper the authors consider the normal matrix model with cubic plus linear potential. In order to regularize the model, they follow Elbau & Felder and introduce a cut-off. In the large size limit, the eigenvalues of the model accumulate uniformly within a certain domain \Omega that they determine explicitly by finding the rational parametrization of its boPPN: PPN: 175515741XPackage identifier: Produktsigel: BSZ-4-NLEBK-KAUB | ZDB-4-NLEBK
No physical items for this record

Powered by Koha