Custom cover image
Custom cover image

Laminational models for some spaces of polynomials of any degree / Alexander Blokh, Lex Oversteegen, Ross Ptacek, Vladlen Timorin

By: Contributor(s): Resource type: Ressourcentyp: Buch (Online)Book (Online)Language: English Series: Memoirs of the American Mathematical Society ; number 1288Publisher: Providence, RI : American Mathematical Society, [2020]Description: 1 Online-Ressource (v, 105 pages)ISBN:
  • 1470461447
  • 9781470461447
Subject(s): Additional physical formats: 1470441764 | 9781470441760 | Erscheint auch als: 1470441764 Druck-AusgabeDDC classification:
  • 514/.742
LOC classification:
  • QA649
Online resources: Summary: 3.2. Some special types of invariant geodesic laminations -- 3.3. Accordions of invariant geodesic laminations -- 3.4. Smart criticality -- 3.5. Linked quadratically critical invariant geodesic laminations -- 3.6. Invariant geodesic laminations generated by laminational equivalence relations -- Chapter 4. Applications: Spaces of topological polynomials -- 4.1. The local structure of the space of all simple dendritic polynomials -- 4.2. Two-dimensional spaces of \si_{ }-invariant geodesic laminations -- Bibliography -- Index -- Back CoverSummary: Cover -- Title page -- Chapter 1. Introduction -- 1.1. Laminations -- 1.2. "Pinched disk" model of the Mandelbrot set -- 1.3. Previous work -- 1.4. Overview of the method -- 1.5. Main applications -- 1.6. Organization of the paper -- 1.7. Acknowledgments -- Chapter 2. Invariant laminations: general properties -- 2.1. Invariant geodesic laminations -- 2.2. Laminational equivalence relations -- 2.3. General properties of invariant geodesic laminations -- Chapter 3. Special types of invariant laminations -- 3.1. Invariant geodesic laminations with quadratically critical portraitsSummary: The so-called ""pinched disk"" model of the Mandelbrot set is due to A. Douady, J. H. Hubbard and W. P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely speaking, ""pinches"" the disk in the plane (whence the name of the model). The significance of the model lies in particular in the fact that this quotient is planar and therefore can be easily visualized. The conjecture that the Mandelbrot set is actually homeomorphic to this model is equivalent to the celebrated MLPPN: PPN: 1755157436Package identifier: Produktsigel: BSZ-4-NLEBK-KAUB | ZDB-4-NLEBK
No physical items for this record

Powered by Koha