Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC-Ansicht ISBD

Spectral Methods Using Multivariate Polynomials on the Unit Ball

Von: Mitwirkende(r): Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: Chapman and Hall/CRC Monographs and Research Notes in Mathematics SerVerlag: Milton : CRC Press LLC, 2019Beschreibung: 1 Online-Ressource (275 pages)ISBN:
  • 9780429344374
Schlagwörter: Andere physische Formen: 9781000725865 | 1000725863 | 9781000725988. | 1000725987 | 9781000725926. | 1000725928 | 0429344376 | 0367345471 | 9780367345471 | Erscheint auch als: Spectral Methods Using Multivariate Polynomials on the Unit Ball. Druck-Ausgabe Milton : CRC Press LLC, ©2019DDC-Klassifikation:
  • 515.353
LOC-Klassifikation:
  • QA374
Online-Ressourcen: Zusammenfassung: 2.4 A Clenshaw algorithm2.4.1 Implementation; 2.5 Best approximation; 2.6 Quadrature over the unit disk, unit ball, and unit sphere; 2.6.1 Quadrature over the unit sphere; 2.7 Least squares approximation; 2.8 MATLAB programs and numerical examples; 3. Creating Transformations of Regions; 3.1 Constructions of Φ; 3.1.1 Harmonic mappings; 3.1.2 Using C∞-modification functions; 3.2 An integration-based mapping formula; 3.2.1 Constructing Φ; 3.2.2 The integration-based mapping in three dimensions; 3.3 Iteration methods; 3.3.1 The iteration algorithm; 3.3.2 An energy methodZusammenfassung: 3.4 Mapping in three dimensions4. Galerkin's Method for the Dirichlet and Neumann Problems; 4.1 Implementation; 4.1.1 Numerical example; 4.2 Convergence analysis; 4.2.1 The transformed equation; 4.2.2 General theory; 4.2.3 Treating a nonzero Dirichlet boundary condition; 4.3 The Neumann problem; 4.3.1 Implementation; 4.3.2 Numerical example; 4.4 Convergence analysis for the Neumann problem; 4.5 The Neumann problem with γ= 0; 4.5.1 Numerical example; 4.5.2 A fluid flow example; 4.5.3 Convergence analysis; 4.6 Defining surface normals and the Jacobian for a general surfaceZusammenfassung: 5. Eigenvalue Problems5.1 Numerical solution -- Dirichlet problem; 5.2 Numerical examples -- Dirichlet problem; 5.3 Convergence analysis -- Dirichlet problem; 5.4 Numerical solution -- Neumann problem; 5.4.1 Numerical examples -- Neumann problem; 6. Parabolic Problems; 6.1 Reformulation and numerical approximation; 6.1.1 Implementation; 6.2 Numerical examples; 6.2.1 An example in three dimensions; 6.3 Convergence analysis; 6.3.1 Further comments; 7. Nonlinear Equations; 7.1 A spectral method for the nonlinear Dirichlet problem; 7.2 Numerical examples; 7.2.1 A three-dimensional exampleZusammenfassung: 7.3 Convergence analysis7.3.1 A nonhomogeneous boundary condition; 7.4 Neumann boundary value problem; 7.4.1 Implementation; 7.4.2 Numerical example; 7.4.3 Handling a nonzero Neumann condition; 8. Nonlinear Neumann Boundary Value Problems; 8.1 The numerical method; 8.1.1 Solving the nonlinear system; 8.2 Numerical examples; 8.2.1 Another planar example; 8.2.2 Two three-dimensional examples; 8.3 Error analysis; 8.3.1 The linear Neumann problem; 8.3.2 The nonlinear Neumann problem; 8.3.3 The error over; 8.3.4 A nonhomogeneous boundary value problemZusammenfassung: Cover; Half Title; Series Page; Title Page; Copyright Page; Dedication; Contents; Preface; 1. Introduction; 1.1 An illustrative example; 1.2 Transformation of the problem; 1.3 Function spaces; 1.4 Variational reformulation; 1.5 A spectral method; 1.6 A numerical example; 1.7 Exterior problems; 1.7.1 Exterior problems in R3; 2. Multivariate Polynomials; 2.1 Multivariate polynomials; 2.2 Triple recursion relation; 2.3 Rapid evaluation of orthonormal polynomials; 2.3.1 Evaluating derivatives for the planar case; 2.3.2 Evaluating derivatives for the three-dimensional caseZusammenfassung: Spectral Methods Using Multivariate Polynomials on the Unit Ball is a research level text on a numerical method for the solution of partial differential equations. The authors introduce, illustrate with examples, and analyze 'spectral methods' that are based on multivariate polynomial approximations. The method presented is an alternative to finite element and difference methods for regions that are diffeomorphic to the unit disk, in two dimensions, and the unit ball, in three dimensions. The speed of convergence of spectral methods is usually much higher than that of finite element or finite difference methods. Features Introduces the use of multivariate polynomials for the construction and analysis of spectral methods for linear and nonlinear boundary value problems Suitable for researchers and students in numerical analysis of PDEs, along with anyone interested in applying this method to a particular physical problem One of the few texts to address this area using multivariate orthogonal polynomials, rather than tensor products of univariate polynomialsPPN: PPN: 1755160518Package identifier: Produktsigel: BSZ-4-NLEBK-KAUB | ZDB-4-NLEBK
Dieser Titel hat keine Exemplare