Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC ISBD

Weighted Polynomial Approximation and Numerical Methods for Integral Equations / by Peter Junghanns, Giuseppe Mastroianni, Incoronata Notarangelo

Von: Mitwirkende(r): Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: Pathways in Mathematics | Springer eBook CollectionVerlag: Cham : Birkhäuser, 2021Beschreibung: 1 Online-Ressource (X, 658 p. 5 illus., 3 illus. in color.)ISBN:
  • 9783030774974
Schlagwörter: Andere physische Formen: 9783030774967 | 9783030774981 | 9783030774998 | Erscheint auch als: 9783030774967 Druck-Ausgabe | Erscheint auch als: 9783030774981 Druck-Ausgabe | Erscheint auch als: 9783030774998 Druck-Ausgabe | Erscheint auch als: Weighted polynomial approximation and numerical methods for integral equations. Druck-Ausgabe Cham : Birkhäuser, 2021. x, 658 SeitenDOI: DOI: 10.1007/978-3-030-77497-4Online-Ressourcen: Zusammenfassung: The book presents a combination of two topics: one coming from the theory of approximation of functions and integrals by interpolation and quadrature, respectively, and the other from the numerical analysis of operator equations, in particular, of integral and related equations. The text focusses on interpolation and quadrature processes for functions defined on bounded and unbounded intervals and having certain singularities at the endpoints of the interval, as well as on numerical methods for Fredholm integral equations of first and second kind with smooth and weakly singular kernel functions, linear and nonlinear Cauchy singular integral equations, and hypersingular integral equations. The book includes both classic and very recent results and will appeal to graduate students and researchers who want to learn about the approximation of functions and the numerical solution of operator equations, in particular integral equations.PPN: PPN: 1769717498Package identifier: Produktsigel: ZDB-2-SEB | ZDB-2-SMA | ZDB-2-SXMS
Dieser Titel hat keine Exemplare

Powered by Koha