Custom cover image
Custom cover image

Data Science for Public Policy / by Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall

By: Contributor(s): Resource type: Ressourcentyp: Buch (Online)Book (Online)Language: English Series: Springer Series in the Data Sciences | Springer eBook CollectionPublisher: Cham : Springer, 2021Description: 1 Online-Ressource (XIV, 363 p. 123 illus., 111 illus. in color.)ISBN:
  • 9783030713522
Subject(s): Additional physical formats: 9783030713515 | 9783030713539 | 9783030713546 | Erscheint auch als: 9783030713515 Druck-Ausgabe | Erscheint auch als: 9783030713539 Druck-Ausgabe | Erscheint auch als: 9783030713546 Druck-Ausgabe | Erscheint auch als: Data science for public policy. Druck-Ausgabe Cham, Switzerland : Springer Nature, 2021. xiv, 363 SeitenDDC classification:
  • 518 23
DOI: DOI: 10.1007/978-3-030-71352-2Online resources: Summary: An Introduction -- The Case for Programming -- Elements of Programming -- Transforming Data -- Record Linkage -- Exploratory Data Analysis -- Regression Analysis -- Framing Classification -- Three Quantitative Perspectives -- Prediction -- Cluster Analysis -- Spatial Data -- Natural Language -- The Ethics of Data Science -- Developing Data Products -- Building Data Teams -- Appendix A: Planning a Data Product -- Appendix B: Interview Questions.Summary: This textbook presents the essential tools and core concepts of data science to public officials, policy analysts, and economists among others in order to further their application in the public sector. An expansion of the quantitative economics frameworks presented in policy and business schools, this book emphasizes the process of asking relevant questions to inform public policy. Its techniques and approaches emphasize data-driven practices, beginning with the basic programming paradigms that occupy the majority of an analyst’s time and advancing to the practical applications of statistical learning and machine learning. The text considers two divergent, competing perspectives to support its applications, incorporating techniques from both causal inference and prediction. Additionally, the book includes open-sourced data as well as live code, written in R and presented in notebook form, which readers can use and modify to practice working with data.PPN: PPN: 177225651XPackage identifier: Produktsigel: ZDB-2-SEB | ZDB-2-SMA | ZDB-2-SXMS
No physical items for this record

Powered by Koha