Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC-Ansicht ISBD

Statistical learning with sparsity : the lasso and generalizations / Trevor Hastie (Stanford University, USA), Robert Tibshirani (Stanford University, USA), Martin Wainwright (University of California, Berkeley USA)

Von: Mitwirkende(r): Resource type: Ressourcentyp: BuchBuchSprache: Englisch Reihen: Chapman & Hall Book | Monographs on statistics and applied probability ; 143Verlag: Boca Raton ; London ; New York : CRC Press, 2020Auflage: First issued in paperbackBeschreibung: xv, 351 Seiten : Illustrationen, DiagrammeISBN:
  • 9780367738334
  • 9781498712163
Schlagwörter: MSC: MSC: *68-02 | 62-02 | 62H12 | 62J05 | 62J07 | 68T05RVK: RVK: SK 850 | CM 4000LOC-Klassifikation:
  • QA188 QA275
Zusammenfassung: Front Cover; Contents; Preface; Chapter 1: Introduction; Chapter 2: The Lasso for Linear Models; Chapter 3: Generalized Linear Models; Chapter 4: Generalizations of the Lasso Penalty; Chapter 5: Optimization Methods; Chapter 6: Statistical Inference; Chapter 7: Matrix Decompositions, Approximations, and Completion; Chapter 8: Sparse Multivariate Methods; Chapter 9: Graphs and Model Selection; Chapter 10: Signal Approximation and Compressed Sensing; Chapter 11: Theoretical Results for the Lasso; Bibliography; Back CoverZusammenfassung: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data.Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of ℓ1 penalties to generalized lPPN: PPN: 1774331888
Exemplare
Medientyp Heimatbibliothek Standort Signatur Status Hinweise Fälligkeitsdatum Barcode
Handbibliothek Fakultät für Mathematik Handbibliothek (Ausleihe und Einsicht nicht möglich) Stoch. / Has Ausgeliehen Ausleihe und Einsicht nicht möglich Standort: FBM-Handapparat 06 29.11.2041 36609554090
Anzahl Vormerkungen: 0