Custom cover image
Custom cover image

Geostatistics for Compositional Data with R / by Raimon Tolosana-Delgado, Ute Mueller

By: Contributor(s): Resource type: Ressourcentyp: Buch (Online)Book (Online)Language: English Series: Use R! | Springer eBook CollectionPublisher: Cham : Springer International Publishing, 2021Publisher: Cham : Imprint: Springer, 2021Edition: 1st ed. 2021Description: 1 Online-Ressource(XXV, 259 p. 104 illus.)ISBN:
  • 9783030825683
Subject(s): Additional physical formats: 9783030825676 | 9783030825690 | 9783030825706 | Erscheint auch als: 9783030825676 Druck-Ausgabe | Erscheint auch als: 9783030825690 Druck-Ausgabe | Erscheint auch als: 9783030825706 Druck-Ausgabe | Erscheint auch als: Geostatistics for compositional data with R. Druck-Ausgabe Cham : Springer, 2021. XXV, 259 SeitenDDC classification:
  • 519.5 23
DOI: DOI: 10.1007/978-3-030-82568-3Online resources: Summary: 1 Introduction -- 2 A review of compositional data analysis -- 3 Exploratory data analysis -- 4 Exploratory spatial analysis -- 5 Variogram Models -- 6 Geostatistical estimation -- 7 Cross-validation -- 8 Multivariate normal score transformation -- 9 Simulation -- 10 Compositional Direct Sampling Simulation -- 11 Evaluation and Postprocessing of Results -- A Matrix decompositions -- B Complete data analysis workflows -- Index.Summary: This book provides a guided approach to the geostatistical modelling of compositional spatial data. These data are data in proportions, percentages or concentrations distributed in space which exhibit spatial correlation. The book can be divided into four blocks. The first block sets the framework and provides some background on compositional data analysis. Block two introduces compositional exploratory tools for both non-spatial and spatial aspects. Block three covers all necessary facets of multivariate spatial prediction for compositional data: variogram modelling, cokriging and validation. Finally, block four details strategies for simulation of compositional data, including transformations to multivariate normality, Gaussian cosimulation, multipoint simulation of compositional data, and common postprocessing techniques, valid for both Gaussian and multipoint methods. All methods are illustrated via applications to two types of data sets: one a large-scale geochemical survey, comprised of a full suite of geochemical variables, and the other from a mining context, where only the elements of greatest importance are considered. R codes are included for all aspects of the methodology, encapsulated in the R package "gmGeostats", available in CRAN.PPN: PPN: 1778351417Package identifier: Produktsigel: ZDB-2-SEB | ZDB-2-SMA | ZDB-2-SXMS
No physical items for this record

Powered by Koha