Custom cover image
Custom cover image

Framework for Analysis and Identification of Nonlinear Distributed Parameter Systems using Bayesian Uncertainty Quantification based on Generalized Polynomial Chaos

By: Resource type: Ressourcentyp: Buch (Online)Book (Online)Language: English Series: Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB KarlsruhePublisher: [Erscheinungsort nicht ermittelbar] : KIT Scientific Publishing, 2017Description: 1 Online-Ressource (XIX, 210 p.)ISBN:
  • 9783731506423
Online resources: Summary: In this work, the Uncertainty Quantification (UQ) approaches combined systematically to analyze and identify systems. The generalized Polynomial Chaos (gPC) expansion is applied to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analyzing the system systematically and reducing the disagreement between the model predictions and the measurements of the real processes to fulfill user defined performance criteriaPPN: PPN: 1778572650Package identifier: Produktsigel: ZDB-94-OAB
No physical items for this record

Open Access. Unrestricted online access star

Creative Commons https://creativecommons.org/licenses/by-sa/4.0 cc

English

Powered by Koha