Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC-Ansicht ISBD

Decorated Dyck paths, polyominoes, and the Delta conjecture / Michele D'Adderio, Alessandro Iraci, Anna Vanden Wyngaerd

Von: Mitwirkende(r): Resource type: Ressourcentyp: BuchBuchSprache: Englisch Reihen: American Mathematical Society. Memoirs of the American Mathematical Society ; volume 278, number 1370 (July 2022)Verlag: Providence, RI : American Mathematical Society, [2022]Beschreibung: xi, 119 Seiten : IllustrationenISBN:
  • 9781470471576
Schlagwörter: Andere physische Formen: Kein Titel | 9781470471705 | Erscheint auch als: Decorated Dyck paths, polyominoes, and the Delta conjecture. Online-Ausgabe Providence, RI : AMS, American Mathematical Society, 2022. 1 Online-Ressource (xi, 119 Seiten)DDC-Klassifikation:
  • 511/.6 23/eng20220917
MSC: MSC: 05E05RVK: RVK: SI 130LOC-Klassifikation:
  • QA164
Zusammenfassung: "We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both Haglund ("A proof of the Schroder conjecture", 2004) and Aval et al. ("Statistics on parallelogram polyominoes and a analogue of the Narayana numbers", 2014). This settles in particular the cases and of the Delta conjecture of Haglund, Remmel and Wilson ("The delta conjecture", 2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g., from Aval, Bergeron and Garsia [2015], Haglund, Remmel and Wilson [2018], and Zabrocki [2019]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in "A proof of the Schroder conjecture" (2004)"-- Provided by publisherPPN: PPN: 1814907025
Exemplare
Medientyp Heimatbibliothek Signatur Status
Institutsbestand Fachbibliothek Mathematik Z 57 c Nicht ausleihbar
Anzahl Vormerkungen: 0