Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC-Ansicht ISBD

Cancellation for surfaces revisited / H. Flenner, S. Kaliman, M. Zaidenberg

Von: Mitwirkende(r): Resource type: Ressourcentyp: BuchBuchSprache: Englisch Reihen: American Mathematical Society. Memoirs of the American Mathematical Society ; volume 278, number 1371 (July 2022)Verlag: Providence, RI : American Mathematical Society, [2022]Beschreibung: v, 111 Seiten : IllustrationenISBN:
  • 9781470453732
Schlagwörter: Andere physische Formen: Kein Titel | 9781470471712 | Erscheint auch als: Cancellation for surfaces revisited. Online-Ausgabe Providence, RI : AMS, American Mathematical Society, 2022. 1 Online-Ressource (v, 111 Seiten)DDC-Klassifikation:
  • 516.3/52 23/eng20220917
MSC: MSC: 14R10 | 14D22LOC-Klassifikation:
  • QA573
Zusammenfassung: "The celebrated Zariski Cancellation Problem asks as to when the existence of an isomorphism X An X An for (affine) algebraic varieties X and X implies that X X. In this paper we provide a criterion for cancellation by the affine line (that is, n 1) in the case where X is a normal affine surface admitting an A1-fibration X B with no multiple fiber over a smooth affine curve B. For two such surfaces X B and X B we give a criterion as to when the cylinders X A1 and X A1 are isomorphic over B. The latter criterion is expressed in terms of linear equivalence of certain divisors on the Danielewski-Fieseler quotient of X over B. It occurs that for a smooth A1-fibered surface X B the cancellation by the affine line holds if and only if X B is a line bundle, and, for a normal such X, if and only if X B is a cyclic quotient of a line bundle (an orbifold line bundle). If X does not admit any A1-fibration over an affine base then the cancellation by the affine line is known to hold for X by a result of Bandman and Makar-Limanov. If the cancellation does not hold then X deforms in a non-isotrivial family of A1-fibered surfaces B with cylinders A1 isomorphic over B. We construct such versal deformation families and their coarse moduli spaces provided B does not admit nonconstant invertible functions. Each of these coarse moduli spaces has infinite number of irreducible components of growing dimensions; each component is an affine variety with quotient singularities. Finally, we analyze from our viewpoint the examples of non-cancellation constructed by Danielewski, tom Dieck, Wilkens, Masuda and Miyanishi, e.a"-- Provided by publisherPPN: PPN: 1814909486
Exemplare
Medientyp Heimatbibliothek Signatur Status
Institutsbestand Fachbibliothek Mathematik Z 57 c Nicht ausleihbar
Anzahl Vormerkungen: 0