Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC ISBD

The International Conference on Deep Learning, Big Data and Blockchain (DBB 2022) / edited by Irfan Awan, Muhammad Younas, Jamal Bentahar, Salima Benbernou

Mitwirkende(r): Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: Lecture Notes in Networks and Systems ; 541Verlag: Cham : Springer International Publishing, 2023Verlag: Cham : Imprint: Springer, 2023Auflage: 1st ed. 2023Beschreibung: 1 Online-Ressource(X, 135 p. 36 illus., 31 illus. in color.)ISBN:
  • 9783031160356
Schlagwörter: Andere physische Formen: 9783031160349 | 9783031160363 | Erscheint auch als: 9783031160349 Druck-Ausgabe | Erscheint auch als: 9783031160363 Druck-AusgabeDOI: DOI: 10.1007/978-3-031-16035-6Online-Ressourcen: Zusammenfassung: Deep and machine learning is the state-of-the-art at providing models, methods, tools and techniques for developing autonomous and intelligent systems which can revolutionise industrial and commercial applications in various fields such as online commerce, intelligent transportation, healthcare and medicine, etc. The ground-breaking technology of blockchain also enables decentralisation, immutability, and transparency of data and applications. This event aims to enable synergy between these areas and provide a leading forum for researchers, developers, practitioners, and professionals from public sectors and industries to meet and share the latest solutions and ideas in solving cutting-edge problems in the modern information society and the economy. The conference focuses on specific challenges in deep (and machine) learning, big data and blockchain. Some of the key topics of interest include (but are not limited to): Deep/Machine learning based models Statistical models and learning Data analysis, insights and hidden pattern Data visualisation Security threat detection Data classification and clustering Blockchain security and trust Blockchain data management.PPN: PPN: 1815864818Package identifier: Produktsigel: ZDB-2-SEB | ZDB-2-INR | ZDB-2-SXIT
Dieser Titel hat keine Exemplare

Powered by Koha