Custom cover image
Custom cover image

Asymptotic completeness for a scalar quasilinear wave equation satisfying the weak null condition / Dongxiao Yu

By: Resource type: Ressourcentyp: BuchBookLanguage: English Series: American Mathematical Society. Memoirs of the American Mathematical Society ; volume 298, number 1492 (June 2024)Publisher: Providence : American Mathematical Society, June 2024Description: v, 128 SeitenISBN:
  • 9781470470487
Subject(s): Additional physical formats: 9781470478582 | Erscheint auch als: Asymptotic Completeness for a Scalar Quasilinear Wave Equation Satisfying the Weak Null Condition. Online-Ausgabe 1st ed. Providence : American Mathematical Society, 2024. 1 online resource (140 pages) | Erscheint auch als: Asymptotic completeness for a scalar quasilinear wave equation satisfying the weak null condition. Online-Ausgabe Providence : American Mathematical Society, 2024. 1 Online-Ressource (v, 128 Seiten)MSC: MSC: 35L70RVK: RVK: SI 130LOC classification:
  • QA300
Summary: Abstract: In this paper, we prove the first asymptotic completeness result for a scalar quasilinear wave equation satisfying the weak null condition. The main tool we use in the study of this equation is the geometric reduced system introduced in Yu (Modified wave operators for a scalar quasilinear wave equation satisfying the weak null condition, 2021). Starting from a global solution u to the quasilinear wave equation, we rigorously show that well chosen asymptotic variables solve the same reduced system with small error terms. This allows us to recover the scattering data for our system, as well as to construct a matching exact solution to the reduced system.PPN: PPN: 1903904900
Holdings
Item type Home library Shelving location Call number Status
Institutsbestand Fachbibliothek Mathematik Bibliothek / frei aufgestellt Z 57 c-298.2024,1492 Nicht ausleihbar
Total holds: 0