Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC-Ansicht ISBD

Materials Informatics I : Methods / edited by Kunal Roy, Arkaprava Banerjee

Mitwirkende(r): Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: Challenges and Advances in Computational Chemistry and Physics ; 39Verlag: Cham : Springer Nature Switzerland, 2025Verlag: Cham : Imprint: Springer, 2025Auflage: 1st ed. 2025Beschreibung: 1 Online-Ressource(XVII, 288 p. 66 illus., 53 illus. in color.)ISBN:
  • 9783031787362
Schlagwörter: Andere physische Formen: 9783031787355 | 9783031787379 | 9783031787386 | Erscheint auch als: 9783031787355 Druck-Ausgabe | Erscheint auch als: 9783031787379 Druck-Ausgabe | Erscheint auch als: 9783031787386 Druck-AusgabeDDC-Klassifikation:
  • 542.85 23
DOI: DOI: 10.1007/978-3-031-78736-2Online-Ressourcen: Zusammenfassung: Part 1. Introduction -- Introduction to Materials Informatics -- Introduction to Cheminformatics for Predictive Modeling -- Introduction to machine learning for predictive modeling of organic materials -- Quantitative Structure-Property Relationships (QSPR) for Materials Science -- Part 2. Methods and Tools -- Quantitative Structure-Property Relationships (QSPR) and Machine Learning (ML) Models for Materials Science -- Optimising Materials Properties with Minimal Data: Lessons from Vanadium Catalyst Modelling -- In silico QSPR studies based on CDFT and IT descriptors -- Applications of quantitative read-across structure-property relationship (q-RASPR) modeling in the field of materials science -- Machine Learning algorithms for applications in Materials Science I -- Machine Learning algorithms for applications in Materials Science II -- Structure-property modeling of quantum-theoretic properties of benzenoid hydrocarbons by means of connection-related graphical descriptors -- Machine learning tools and Web services for Materials Science modelling.Zusammenfassung: This contributed volume explores the integration of machine learning and cheminformatics within materials science, focusing on predictive modeling techniques. It begins with foundational concepts in materials informatics and cheminformatics, emphasizing quantitative structure-property relationships (QSPR). The volume then presents various methods and tools, including advanced QSPR models, quantitative read-across structure-property relationship (q-RASPR) models, optimization strategies with minimal data, and in silico studies using different descriptors. Additionally, it explores machine learning algorithms and their applications in materials science, alongside innovative modeling approaches for quantum-theoretic properties. Overall, the book serves as a comprehensive resource for understanding and applying machine learning in the study and development of advanced materials and is a useful tool for students, researchers and professionals working in these areas.PPN: PPN: 1922928836Package identifier: Produktsigel: ZDB-2-SEB | ZDB-2-CMS | ZDB-2-SXC
Dieser Titel hat keine Exemplare