Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC-Ansicht ISBD

Machine Learning and Clustering for a Sustainable Future : Applications in Engineering and Environmental Science / by Alma Yunuen Raya-Tapia, Francisco Javier López-Flores, César Ramírez-Márquez, José María Ponce-Ortega

Von: Mitwirkende(r): Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: Studies in Computational Intelligence ; 1233Verlag: Cham : Springer Nature Switzerland, 2025Verlag: Cham : Imprint: Springer, 2025Auflage: 1st ed. 2025Beschreibung: 1 Online-Ressource(XIV, 351 p. 150 illus., 135 illus. in color.)ISBN:
  • 9783032038760
Schlagwörter: Andere physische Formen: 9783032038753 | 9783032038777 | 9783032038784 | Erscheint auch als: 9783032038753 Druck-Ausgabe | Erscheint auch als: 9783032038777 Druck-Ausgabe | Erscheint auch als: 9783032038784 Druck-AusgabeDDC-Klassifikation:
  • 006.3 23
DOI: DOI: 10.1007/978-3-032-03876-0Online-Ressourcen: Zusammenfassung: Chapter 1. Artificial Intelligence, Machine Learning, and Clustering in Sustainability -- Chapter 2. Fundamentals of Clustering: Methods, Metrics, and Optimization -- Chapter 3. Programming for Clustering: Python, R, MATLAB, and Anaconda Libraries -- Chapter 4. Clustering Applications in Process Systems Engineering -- Chapter 5. Greenhouse Gas Emissions Clustering for Net Zero Goals -- Chapter 7. The Energy-Food Nexus: Geopolitical and Health Crises Analysis -- Chapter 8: Clustering Urban Zones: A Study of Gentrification -- Chapter 10: Spatiotemporal Clustering of Dam Filling Patterns.Zusammenfassung: This book explores cutting-edge machine learning and clustering techniques to tackle critical challenges in engineering, environmental science, and sustainability. The book provides an in-depth examination of clustering methodologies, covering unsupervised and supervised techniques, data preprocessing, distance metrics, and cluster validation methods such as the elbow and silhouette techniques. Readers will find practical insights into applying these methods to real-world problems, including clustering greenhouse gas emissions, optimizing energy systems, and analyzing the energy-food nexus in the context of global crises. By integrating theoretical foundations with hands-on applications, this book serves as a valuable resource for researchers, engineers, and professionals seeking data-driven solutions for sustainability challenges.PPN: PPN: 193604885XPackage identifier: Produktsigel: ZDB-2-SEB | ZDB-2-INR | ZDB-2-SXIT
Dieser Titel hat keine Exemplare

Barrierefreier Inhalt: PDF/UA-1. Table of contents navigation. Single logical reading order. Short alternative textual descriptions. Use of color is not sole means of conveying information. Use of high contrast between text and background color. Next / Previous structural navigation. All non-decorative content supports reading without sight

Anmerkungen zur Barrierefreiheit: This PDF has been created in accordance with the PDF/UA-1 standard to enhance accessibility, including screen reader support, described non-text content (images, graphs), bookmarks for easy navigation, keyboard-friendly links and forms and searchable, selectable text. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com. Please note that a more accessible version of this eBook is available as ePub.. No reading system accessibility options actively disabled. Publisher contact for further accessibility information: accessibilitysupport@springernature.com