Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC-Ansicht ISBD

Holomorphic automorphic forms and cohomology / Roelof Bruggeman, YoungJu Choie, Nikolaos Diamantis

Von: Mitwirkende(r): Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: Memoirs of the American Mathematical Society ; volume 253, number 1212Verlag: Providence, RI : American Mathematical Society, May 2018Beschreibung: 1 Online-Ressource (vii, 167 pages)ISBN:
  • 1470444194
  • 9781470444198
Schlagwörter: Andere physische Formen: 1470428555 | 9781470428556 | Erscheint auch als: Holomorphic automorphic forms and cohomology. Druck-Ausgabe Providence, RI : American Mathematical Society, 2018. vii, 167 SeitenDDC-Klassifikation:
  • 512.7/3
RVK: RVK: SI 130 | SK 340 | SK 240 | SK 180LOC-Klassifikation:
  • QA612
Online-Ressourcen: Zusammenfassung: "We investigate the correspondence between holomorphic automorphic forms on the upper half-plane with complex weight and parabolic cocycles. For integral weights at least 2 this correspondence is given by the Eichler integral. We use Knopp's generalization of this integral to real weights, and apply it to complex weights that are not an integer at least 2. We show that for these weights the generalized Eichler integral gives an injection into the first cohomology group with values in a module of holomorphic functions, and characterize the image. We impose no condition on the growth of the automorphic forms at the cusps. Our result concerns arbitrary cofinite discrete groups with cusps, and covers exponentially growing automorphic forms, like those studied by Borcherds, and like those in the theory of mock automorphic formsZusammenfassung: A tool in establishing these results is the relation to cohomology groups with values in modules of "analytic boundary germs", which are represented by harmonic functions on subsets of the upper half-plane. It turns out that for integral weights at least 2 the map from general holomorphic automorphic forms to cohomology with values in analytic boundary germs is injective. So cohomology with these coefficients can distinguish all holomorphic automorphic forms, unlike the classical Eichler theory."--Page viiZusammenfassung: Introduction -- Pt. 1 Cohomology with values in holomorphic functions -- Definitions and notations -- Modules and cocycles -- The image of automorphic forms in cohomology -- One-sided averages -- Pt. 2 Harmonic Functions -- Harmonic functions and cohomology -- Boundary germs -- Polar harmonic functions -- Pt. 3 Cohomology with values in analytic boundary germs -- Highest weight spaces of analytic boundary germs -- Tesselation and cohomology -- Boundary germ bohomology and automorphic forms -- Automorphic forms of integral weights at least 2 and analytic boundary germ cohomology -- Pt. 4 Miscellaneous -- Isomorphisms between parabolic cohomology groups -- Cocycles and singularities -- Quantum automorphic forms -- Remarks on the literaturePPN: PPN: 102651200XPackage identifier: Produktsigel: ZDB-4-NLEBK
Dieser Titel hat keine Exemplare