Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC-Ansicht ISBD

Analysis I / Matthias Hieber

Von: Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Deutsch Reihen: SpringerLink Bücher | Springer eBook CollectionVerlag: Berlin : Springer Spektrum, [2018]Copyright-Datum: © 2018Beschreibung: Online-Ressource (X, 292 Seiten) : Illustrationen, DiagrammeISBN:
  • 9783662575383
Schlagwörter: Genre/Form: Andere physische Formen: 9783662575376 | Erscheint auch als: Analysis. Druck-Ausgabe Berlin : Springer Spektrum, 2018DDC-Klassifikation:
  • 515
MSC: MSC: *26-01 | 26AxxRVK: RVK: SK 400LOC-Klassifikation:
  • QA299.6-433
DOI: DOI: 10.1007/978-3-662-57538-3Online-Ressourcen: Zusammenfassung: Dieses Lehrbuch zeichnet sich durch einen klaren und modernen Aufbau aus und ist auf eine breit angelegte Grundausbildung ausgerichtet. Es ist der erste Band einer zweiteiligen Einführung in die Analysis, die Studierende der Mathematik und verwandter Studienrichtungen (etwa Physik, Informatik und Ingenieurwissenschaften) sowie deren Dozenten anspricht. Zentrale Grundkonzepte werden bereits frühzeitig eingeführt und diskutiert - jedoch zunächst nicht in einem allgemeinen, sondern in einem angemessenen und überschaubaren Rahmen. Diese Konzepte werden anschließend mit steigender Komplexität vertiefend behandelt und aus verschiedenen Blickwinkeln beleuchtet. Eine Vielzahl von Beispielen und Aufgaben zeigt die Vernetzung und Verzahnung der Analysis mit anderen Teilgebieten der Mathematik und gibt den Studierenden weitreichende Möglichkeiten, ihr Wissen und Verständnis dieser Thematik zu vertiefen bzw. zu verbreitern. Kapitelweise ausgelagerte Anmerkungen und Ergänzungen dienen als Zusatz- und Hintergrundinformation zum behandelten Stoff und runden diesen ab, ohne den Blick auf das Wesentliche zu verstellen. Der Inhalt Grundlagen - Reelle, rationale, ganze, natürliche und komplexe Zahlen - Konvergenz von Folgen und Reihen - Potenzreihen - Stetigkeit - Topologische Grundlagen - Exponentialfunktion und Verwandte - Differentiation - Integration - Summen, Integrale und Anwendungen Der Autor Prof. Dr. Matthias Hieber lehrt und forscht am Fachbereich Mathematik der TU Darmstadt und leitet dort die Arbeitsgruppe Angewandte AnalysisZusammenfassung: Grundlagen: Mathematische Sprache, Zahlen, Mengen, Abbildungen -- Konvergenz von Folgen und Reihen -- Stetige Funktionen und topologische Grundlagen -- Differentialrechnung einer Variablen -- Integralrechnung einer VariablenPPN: PPN: 1041327633Package identifier: Produktsigel: ZDB-2-SEB | ZDB-2-SNA
Dieser Titel hat keine Exemplare

Reproduktion. (Springer eBook Collection. Life Science and Basic Disciplines)