Benutzerdefiniertes Cover
Benutzerdefiniertes Cover
Normale Ansicht MARC ISBD

MATLAB machine learning recipes : a problem-solution approach / Michael Paluszek, Stephanie Thomas

Von: Mitwirkende(r): Resource type: Ressourcentyp: Buch (Online)Buch (Online)Sprache: Englisch Reihen: Springer eBook CollectionVerlag: New York : Apress, [2019]Auflage: Second editionBeschreibung: 1 Online-Ressource (XIX, 347 Seiten)ISBN:
  • 9781484239162
Schlagwörter: Andere physische Formen: 9781484239155 | 9781484239179 | Erscheint auch als: MATLAB machine learning recipes. Druck-Ausgabe Second Edition. New York : Apress, 2019. XIX, 347 SeitenDDC-Klassifikation:
  • 006.3
RVK: RVK: ST 601LOC-Klassifikation:
  • Q334-342
DOI: DOI: 10.1007/978-1-4842-3916-2Online-Ressourcen: Zusammenfassung: Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. You will: Learn to write code for machine learning, adaptive control and estimation using MATLAB See how these three areas complement each other Understand why these three areas are needed for robust machine learning applications Use MATLAB graphics and visualization tools for machine learning Code real world examples in MATLAB for major applications of machine learning in big dataZusammenfassung: 1 Overview -- 2 Data Representation -- 3 MATLAB Graphics -- 4 Kalman Filters -- 5 Adaptive Control -- 6 Fuzzy Logic -- 7 Data Classification with Decision Trees -- 8 Simple Neural Nets -- 9 Classification with Neural Nets -- 10 Neural Nets with Deep Learning -- 11 Neural Aircraft Control -- 12 Multiple Hypothesis Testing -- 13 Autonomous Driving with MHT -- 14 Case-Based Expert Systems -- Appendix A: A Brief History of Autonomous Learning -- Appendix B: Software for Machine LearningPPN: PPN: 104837212XPackage identifier: Produktsigel: ZDB-2-CWD | ZDB-2-SEB | ZDB-2-SXPC
Dieser Titel hat keine Exemplare

Reproduktion. (Springer eBook Collection. Professional and Applied Computing)

Powered by Koha